\(\int \frac {x^{11}}{3+4 x^3+x^6} \, dx\) [151]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 35 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=-\frac {4 x^3}{3}+\frac {x^6}{6}-\frac {1}{6} \log \left (1+x^3\right )+\frac {9}{2} \log \left (3+x^3\right ) \]

[Out]

-4/3*x^3+1/6*x^6-1/6*ln(x^3+1)+9/2*ln(x^3+3)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1371, 715, 646, 31} \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=\frac {x^6}{6}-\frac {4 x^3}{3}-\frac {1}{6} \log \left (x^3+1\right )+\frac {9}{2} \log \left (x^3+3\right ) \]

[In]

Int[x^11/(3 + 4*x^3 + x^6),x]

[Out]

(-4*x^3)/3 + x^6/6 - Log[1 + x^3]/6 + (9*Log[3 + x^3])/2

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 646

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[
(c*d - e*(b/2 - q/2))/q, Int[1/(b/2 - q/2 + c*x), x], x] - Dist[(c*d - e*(b/2 + q/2))/q, Int[1/(b/2 + q/2 + c*
x), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && NiceSqrtQ[b^2 - 4*a*
c]

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[(d + e*x)
^m, a + b*x + c*x^2, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2,
0] && NeQ[2*c*d - b*e, 0] && IGtQ[m, 1] && (NeQ[d, 0] || GtQ[m, 2])

Rule 1371

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} \text {Subst}\left (\int \frac {x^3}{3+4 x+x^2} \, dx,x,x^3\right ) \\ & = \frac {1}{3} \text {Subst}\left (\int \left (-4+x+\frac {12+13 x}{3+4 x+x^2}\right ) \, dx,x,x^3\right ) \\ & = -\frac {4 x^3}{3}+\frac {x^6}{6}+\frac {1}{3} \text {Subst}\left (\int \frac {12+13 x}{3+4 x+x^2} \, dx,x,x^3\right ) \\ & = -\frac {4 x^3}{3}+\frac {x^6}{6}-\frac {1}{6} \text {Subst}\left (\int \frac {1}{1+x} \, dx,x,x^3\right )+\frac {9}{2} \text {Subst}\left (\int \frac {1}{3+x} \, dx,x,x^3\right ) \\ & = -\frac {4 x^3}{3}+\frac {x^6}{6}-\frac {1}{6} \log \left (1+x^3\right )+\frac {9}{2} \log \left (3+x^3\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=-\frac {4 x^3}{3}+\frac {x^6}{6}-\frac {1}{6} \log \left (1+x^3\right )+\frac {9}{2} \log \left (3+x^3\right ) \]

[In]

Integrate[x^11/(3 + 4*x^3 + x^6),x]

[Out]

(-4*x^3)/3 + x^6/6 - Log[1 + x^3]/6 + (9*Log[3 + x^3])/2

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.80

method result size
default \(-\frac {4 x^{3}}{3}+\frac {x^{6}}{6}-\frac {\ln \left (x^{3}+1\right )}{6}+\frac {9 \ln \left (x^{3}+3\right )}{2}\) \(28\)
risch \(\frac {x^{6}}{6}-\frac {4 x^{3}}{3}+\frac {8}{3}-\frac {\ln \left (x^{3}+1\right )}{6}+\frac {9 \ln \left (x^{3}+3\right )}{2}\) \(29\)
norman \(-\frac {4 x^{3}}{3}+\frac {x^{6}}{6}-\frac {\ln \left (x +1\right )}{6}+\frac {9 \ln \left (x^{3}+3\right )}{2}-\frac {\ln \left (x^{2}-x +1\right )}{6}\) \(37\)
parallelrisch \(-\frac {4 x^{3}}{3}+\frac {x^{6}}{6}-\frac {\ln \left (x +1\right )}{6}+\frac {9 \ln \left (x^{3}+3\right )}{2}-\frac {\ln \left (x^{2}-x +1\right )}{6}\) \(37\)

[In]

int(x^11/(x^6+4*x^3+3),x,method=_RETURNVERBOSE)

[Out]

-4/3*x^3+1/6*x^6-1/6*ln(x^3+1)+9/2*ln(x^3+3)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.77 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=\frac {1}{6} \, x^{6} - \frac {4}{3} \, x^{3} + \frac {9}{2} \, \log \left (x^{3} + 3\right ) - \frac {1}{6} \, \log \left (x^{3} + 1\right ) \]

[In]

integrate(x^11/(x^6+4*x^3+3),x, algorithm="fricas")

[Out]

1/6*x^6 - 4/3*x^3 + 9/2*log(x^3 + 3) - 1/6*log(x^3 + 1)

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.83 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=\frac {x^{6}}{6} - \frac {4 x^{3}}{3} - \frac {\log {\left (x^{3} + 1 \right )}}{6} + \frac {9 \log {\left (x^{3} + 3 \right )}}{2} \]

[In]

integrate(x**11/(x**6+4*x**3+3),x)

[Out]

x**6/6 - 4*x**3/3 - log(x**3 + 1)/6 + 9*log(x**3 + 3)/2

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.77 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=\frac {1}{6} \, x^{6} - \frac {4}{3} \, x^{3} + \frac {9}{2} \, \log \left (x^{3} + 3\right ) - \frac {1}{6} \, \log \left (x^{3} + 1\right ) \]

[In]

integrate(x^11/(x^6+4*x^3+3),x, algorithm="maxima")

[Out]

1/6*x^6 - 4/3*x^3 + 9/2*log(x^3 + 3) - 1/6*log(x^3 + 1)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.83 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=\frac {1}{6} \, x^{6} - \frac {4}{3} \, x^{3} + \frac {9}{2} \, \log \left ({\left | x^{3} + 3 \right |}\right ) - \frac {1}{6} \, \log \left ({\left | x^{3} + 1 \right |}\right ) \]

[In]

integrate(x^11/(x^6+4*x^3+3),x, algorithm="giac")

[Out]

1/6*x^6 - 4/3*x^3 + 9/2*log(abs(x^3 + 3)) - 1/6*log(abs(x^3 + 1))

Mupad [B] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.77 \[ \int \frac {x^{11}}{3+4 x^3+x^6} \, dx=\frac {9\,\ln \left (x^3+3\right )}{2}-\frac {\ln \left (x^3+1\right )}{6}-\frac {4\,x^3}{3}+\frac {x^6}{6} \]

[In]

int(x^11/(4*x^3 + x^6 + 3),x)

[Out]

(9*log(x^3 + 3))/2 - log(x^3 + 1)/6 - (4*x^3)/3 + x^6/6